Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 15(7)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37049569

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease mainly characterized by the hepatic accumulation of lipid inducing a deregulation of ß-oxidation. Its advanced form is non-alcoholic steatohepatitis (NASH), which, in addition to lipid accumulation, induces hepatocellular damage, oxidative stress and fibrosis that can progress to cirrhosis and to its final stage: hepatocellular carcinoma (HCC). To date, no specific therapeutic treatment exists. The implications of organ crosstalk have been highlighted in many metabolic disorders, such as diabetes, metabolic-associated liver diseases and obesity. Skeletal muscle, in addition to its role as a reservoir and consumer of energy and carbohydrate metabolism, is involved in this inter-organs' communication through different secreted products: myokines, exosomes and enzymes, for example. Interestingly, resistance exercise has been shown to have a beneficial impact on different metabolic pathways, such as lipid oxidation in different organs through their secreted products. In this review, we will mainly focus on myokines and their effects on non-alcoholic fatty liver disease, and their complication: non-alcoholic steatohepatitis and HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Fígado/metabolismo , Fibrose , Lipídeos
2.
Front Endocrinol (Lausanne) ; 13: 1035159, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36407314

RESUMO

Circular RNAs (circRNAs) are class of non-coding RNA, which are characterized by a covalently closed loop structure. Functionally they can act on cellular physiology, notably by sponging microRNAs (miR), regulating gene expression or interacting with binding protein. To date, circRNAs might represent an interesting, underexploited avenue for new target discovery for therapeutic applications, especially in the liver. The first characteristic of non-alcoholic fatty liver disease (NAFLD) is hepatic cholesterol accumulation, followed by its advanced form of the affection, nonalcoholic steatohepatitis (NASH), due to the occurrence of lobular inflammation, irreversible fibrosis, and in some cases hepatocellular carcinoma (HCC). Therefore, studies have investigated the importance of the dysregulation of circRNAs in the onset of metabolic disorders. In this review, we summarize the potential role of circRNAs in the development of metabolic diseases associated with the liver such as NAFLD or NASH, and their potential to become therapeutic strategies for these pathologies.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/epidemiologia , RNA Circular/genética , Neoplasias Hepáticas/etiologia
4.
Cell Rep ; 13(12): 2781-93, 2015 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-26711344

RESUMO

The axon initial segment (AIS), located within the first 30 µm of the axon, has two essential roles in generating action potentials and maintaining axonal identity. AIS assembly depends on a ßIV-spectrin/ankyrin G scaffold, but its macromolecular arrangement is not well understood. Here, we quantitatively determined the AIS nanoscale architecture by using stochastic optical reconstruction microscopy (STORM). First, we directly demonstrate that the 190-nm periodicity of the AIS submembrane lattice results from longitudinal, head-to-head ßIV-spectrin molecules connecting actin rings. Using multicolor 3D-STORM, we resolve the nanoscale organization of ankyrin G: its amino terminus associates with the submembrane lattice, whereas the C terminus radially extends (∼ 32 nm on average) toward the cytosol. This AIS nano-architecture is highly resistant to cytoskeletal perturbations, indicating its role in structural stabilization. Our findings provide a comprehensive view of AIS molecular architecture and will help reveal the crucial physiological functions of this compartment.


Assuntos
Axônios/fisiologia , Axônios/ultraestrutura , Neurônios/fisiologia , Neurônios/ultraestrutura , Animais , Anquirinas/fisiologia , Citoesqueleto/fisiologia , Citoesqueleto/ultraestrutura , Ratos , Ratos Wistar
5.
Nucleic Acids Res ; 41(Database issue): D920-4, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23161685

RESUMO

The Atlas of Genetics and Cytogenetics in Oncology and Haematology (http://AtlasGeneticsOncology.org) is a peer-reviewed internet journal/encyclopaedia/database focused on genes implicated in cancer, cytogenetics and clinical entities in cancer and cancer-prone hereditary diseases. The main goal of the Atlas is to provide review articles that describe complementary topics, namely, genes, genetic abnormalities, histopathology, clinical diagnoses and a large iconography. This description, which was historically based on karyotypic abnormalities and in situ hybridization (fluorescence in situ hybridization) techniques, now benefits from comparative genomic hybridization and massive sequencing, uncovering a tremendous amount of genetic rearrangements. As the Atlas combines different types of information (genes, genetic abnormalities, histopathology, clinical diagnoses and external links), its content is currently unique. The Atlas is a cognitive tool for fundamental and clinical research and has developed into an encyclopaedic work. In clinical practice, it contributes to the cytogenetic diagnosis and may guide treatment decision making, particularly regarding rare diseases (because they are numerous and are frequently encountered). Readers as well as the authors of the Atlas are researchers and/or clinicians.


Assuntos
Bases de Dados Genéticas , Neoplasias/genética , Análise Citogenética , Genes Neoplásicos , Neoplasias Hematológicas/genética , Humanos , Internet , Publicações Periódicas como Assunto
6.
G3 (Bethesda) ; 1(2): 93-103, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22384322

RESUMO

To identify genes involved in phenotypic traits, translational genomics from highly characterized model plants to poorly characterized crop plants provides a valuable source of markers to saturate a zone of interest as well as functionally characterized candidate genes. In this paper, an integrated view of the pea genetic map was developed. A series of gene markers were mapped and their best reciprocal homologs were identified on M. truncatula, L. japonicus, soybean, and poplar pseudomolecules. Based on the syntenic relationships uncovered between pea and M. truncatula, 5460 pea Unigenes were tentatively placed on the consensus map. A new bioinformatics tool, http://www.thelegumeportal.net/pea_mtr_translational_toolkit, was developed that allows, for any gene sequence, to search its putative position on the pea consensus map and hence to search for candidate genes among neighboring Unigenes. As an example, a promising candidate gene for the hypernodulation mutation nod3 in pea was proposed based on the map position of the likely homolog of Pub1, a M. truncatula gene involved in nodulation regulation. A broader view of pea genome evolution was obtained by revealing syntenic relationships between pea and sequenced genomes. Blocks of synteny were identified which gave new insights into the evolution of chromosome structure in Papillionoids and Eudicots. The power of the translational genomics approach was underlined.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...